

Exploring Secondary Metabolites from Extremophilic Streptomyces for RET Inhibition in Non-Small Cell Lung Cancer

Gupta Nistha, Manoj Angelina, Jayakumar Gayathri and Veerappapillai Shanthi*

Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, INDIA

*shanthi.v@vit.ac.in

Abstract

Lung cancer is the second most prevalent cancer globally, with significant mortality rates among both smokers and nonsmokers. Targeting RET gene, which has been linked to the onset of non-small cell lung cancer (NSCLC) cases, offers a novel therapeutic avenue. Vandetanib, a tyrosine kinase inhibitor (TKI) of the RET gene, has several adverse effects, including skin toxicity, EGFR-induced diarrhea and VEGFR-related hypertension. Thus, we sought to identify promising candidates for RET inhibition employing a combination of in silico techniques. In this regard, we intend to investigate secondary metabolites from Streptomyces species, which are renowned for their therapeutic potential. A total of 3383 compounds produced by the Streptomyces species under extreme conditions were identified utilizing the antiSMASH database. Through molecular docking, the compounds were screened against the RET protein, identifying 43 compounds with better docking scores than vandetanib (-8.7 kcal/mol).

Subsequent ADMET analysis and machine learning validation using KDEEP, GNINA and RF scoring functions highlighted Esmeraldin B as a leading candidate. Esmeraldin B demonstrated superior binding affinity and interaction profiles, establishing five hydrogen bonds and hydrophobic interactions. Further, the scaffold analysis revealed that Esmeraldin B's phenazine moiety contributes to its potent antitumor properties. Collectively, these findings suggest that Esmeraldin B holds promise as a more effective and potentially safer alternative to vandetanib for RET-positive NSCLC. However, extensive in vitro and in vivo studies are required to confirm its therapeutic potential and to ensure safety for clinical and therapeutic applications.

Keywords: Non-small cell lung cancer, REarranged during Transfection, Tyrosine kinase inhibitors, ML-SF, ADMET, Molecular Docking.

Introduction

Lung cancer is the second most common cancer worldwide, with the highest incidence. While smoking accounts for over 80% of cases, lung cancer remains a top cause of cancer

related deaths among non-smokers¹⁶. About 2% of patients have REarranged during Transfection (RET) mutations, primarily in non-small cell lung cancer (NSCLC), often with minimal smoking history and younger age^{7,12}. The RET gene has at least 26 mutations that can cause illnesses, including multiple endocrine neoplasia type 2 (MEN2), which may result from activating point mutations²². There is a substantial correlation between the site of the point mutation and the disease phenotype.

Chromosome rearrangements can also cause constitutive activation of the RET kinase, leading to fusion genes, which are mostly linked to NSCLC³⁶. Adding chemotherapy to surgery as adjuvant or neoadjuvant treatment can improve survival rates by roughly 5% at 5 years. However, these are generally not as specific as targeted therapies¹⁵. Targeted therapies against RET proteins have shown improved outcomes, including increased response rates and prolonged progression-free survival for patients with RET-positive NSCLC^{1,12}.

Multiple Kinase Inhibitors (MKIs) like cabozantinib and vandetanib initially offered hope for treating RET-positive NSCLC patients. Vandetanib functions as a treatment for RET rearranged lung cancer by targeting the abnormal activity of RET kinase that leads to cancer⁴¹. It inhibits ATP-binding sites, disrupting downstream signaling pathways for uncontrolled cell growth, survival and metastasis. When vandetanib was administered along with appropriate regimens of chemotherapy, patients exhibited better response¹⁴. Unfortunately, these nonselective MKIs showed limited durability in responses and caused off-target side effects such as skin toxicity and diarrhea and posed challenges for patient adherence in NSCLC³². Thus, alternative therapies are needed to counteract this issue.

This study aims to address the limitations of current drugs by investigating new generations of RET inhibitors, particularly medicinal compounds from bacteria in extreme environments with potent anti-cancer effects against the mutated RET gene. In this context, *in silico* approaches play a crucial role, allowing us to screen vast libraries of bacterial compounds rapidly and efficiently²⁰. These computational techniques facilitate the identification of potential RET inhibitors by predicting their binding affinities and specificities. Additionally, it can identify the interactions between bacterial compounds and the RET protein, providing insights into their mechanisms of action⁴. These approaches help to prioritize compounds for experimental validation and to optimize lead compounds by predicting

their pharmacokinetic and pharmacodynamic properties, thereby enhancing the development of new RET inhibitors.

Material and Methods

Dataset Retrieval: Our investigation into a potential drug compound targeting the 2IVU protein, commenced by utilizing the antiSMASH Version 7.0 database⁶. antiSMASH is the first all-encompassing pipeline that detects biosynthetic loci across a wide array of secondary metabolite classes such as polyketides, non-ribosomal peptides and many others. Our study focused predominantly on secondary metabolites produced by *Streptomyces* species thriving in challenging environments. Specifically, *Streptomyces* sp. A144, *Streptomyces* sp. KY75, *Streptomyces* sp. INR7, *Streptomyces* sp. Mg1, *Streptomyces huasconensis* and *Streptomyces leeuwenhoekii* were the target species. Their respective NCBI sequences were provided as input data and detection strictness was maintained at a rigorous level.

Additional features, including MIGB Comparison and Cluster Blast, were enabled before submission. The result obtained comprised of the whole genome sequence of the species from which the secondary metabolites produced by each gene were identified. For each identified secondary metabolite, detailed information concerning compound structure, PubChem ID, NPAtlas ID and the presence of 2D or 3D structures were systematically collected and documented.

Protein preparation and Molecular Docking: The protein structure was obtained from the Protein Data Bank (PDB ID: 2IVU) and it was prepared using BIOVIA Discovery Studio. Water molecules and heteroatoms were removed and polar hydrogen atoms were added. The three-dimensional structure of the reference compound vandetanib (ID - 3081361) was retrieved from PubChem in structural data format¹⁹. The structures of the prepared 2IVU protein and the compounds to be docked were first loaded onto PyRx software, where molecular docking was performed using the AutoDock Vina mode to identify potential binding sites and ligand energies⁹. The parameters such as grid size and scoring functions were adjusted. The docking simulation was initiated to generate possible binding conformations out of which the most stable structure was selected for analysis. Compounds with docking scores more negative than vandetanib were selected for further analysis²¹.

ADMET analysis: Pharmacokinetic parameters which control a drug's capacity to reach target proteins in the body and how long it stays in the bloodstream, are included in ADMET (absorption, distribution, metabolism, elimination and toxicity) analysis^{26,30}. ADMET procedures are now commonly used in early-stage drug discovery to reduce attrition rates, emphasizing the importance of addressing these factors upfront to enhance drug efficacy and safety profiles. ADMET Lab 2.0 simplifies this process by providing comprehensive analysis of these properties³⁹. The

screened compounds were subjected to ADMET analysis to analyze the physicochemical properties of these compounds. The parameters including MW, nHA, nHD, LogP, HIA, F20%, F30%, PBB, BBB, CL, carcinogenicity, hERG blocker, rat oral toxicity were evaluated.

Validation of results using Machine Learning Scoring Functions:

In recent years, machine-learning scoring functions (ML-SFs) based on protein-ligand complexes have shown substantial promise in specialized small-scale investigations⁵. To validate the docking results, three prominent ML-SFs such as KDeep, GNINA and RF Score were utilised. KDeep is a fast machine-learning approach for predicting binding affinities using State-of-the-Art 3D-convolutional neural networks¹⁸. GNINA utilizes an ensemble of convolutional neural networks (CNNs) as a scoring function. A CNN scoring function automatically learns the key features of protein-ligand interactions that correlates with binding²³. RF score calculates the binding affinity of a protein-ligand pair in a complex³⁸. Higher RF score value indicates better binding of the ligand into the binding site of the protein.

Interaction analysis and anticancer activity-prediction:

In the drug discovery process, interaction analysis plays a pivotal role in understanding complex biological processes and mechanisms³. The docked configurations of each compound in PDB format were uploaded to PLIP for analysis². PLIP provides visual representation of the protein-ligand complex, the interaction chain and different interaction types between each compound and the target protein. After performing PLIP analysis, the PASS server was used to predict the biological spectrum of the screened compounds. Using Bayesian estimates, the server predicts the likelihood of actives (Pa) and inactives (Pi) to differentiate the biological activities of hit compounds¹³.

Results and Discussion

Mining *Streptomyces* genomes for anti-cancer metabolites: antiSMASH7.0 is a renowned online genome mining tool used for predicting secondary metabolites synthesized by bacteria. The primary types of gene clusters involved in this biosynthesis include non-ribosomal peptide synthetases (NRPS), polyketide synthases (PKS), terpenes, siderophores, lanthipeptides and ribosomally synthesized and post-translationally modified peptides (RiPP-like). Previous studies have indicated that NRPS, PKS and terpene gene clusters are among the most abundant, containing a vast array of bioactive compounds with varied functions including plant protection^{11,28}.

In total, 73 types of biosynthetic gene clusters (BGCs) were identified in the secondary metabolites produced by various *Streptomyces* species. It is important to note that organisms with multiple open reading frames (ORFs) typically encode a greater number of gene cluster regions²⁴. The genome analysis of all *Streptomyces* spp. produced a total of 3383 putative secondary metabolites.

Molecular docking and selection of candidate compounds: Molecular docking aids in the identification of potential drug candidates by predicting the binding affinity of small molecules to a specific protein or receptor³¹. The RET-based protein 2IVU was prepared and docked with compounds after energy minimization using PyRx. Vandetanib was also docked against the target protein, yielding a docking score of -8.7 kcal/mol. The docking

scores of the ligands were compared to this value, selecting those with scores lower (more negative) than vandetanib for further investigation. As shown in table 1, based on the threshold prescribed, out of 3383 compounds, 40 compounds were found to have lower docking scores in the range of -8.700 kcal/mol to -55.700 kcal/mol than vandetanib.

Table 1
Docking and ML-SF scores of the reference and screened lead compounds.

S.N.	Compound name	Compound ID	Docking Score	ML-SF		
				KDeep	GNINA	RF
				dG (kcal/mol)	CNN affinity	pK units
1	Vandetanib	3081361	-8.7	-11.386	7.202	6.025
2	Urdamycin E	175975	-8.7	-9.805	6.718	6.209
3	Kinamycin	161863	-8.7	-8.776	6.707	5.989
4	Cyanogramide	102143687	-8.9	-7.07	5.611	5.95
5	AQ 256	12435249	-8.9	-7.2	4.932	5.971
6	A879369	135957253	-9	-7.466	5.176	5.955
7	Dehydroxynocardamine	11606728	-9	-6.636	6.17	5.961
8	Aurachin A	6439172	-9.1	-8.558	6.261	5.966
9	Splenocin C	42626285	-9.1	-8.654	6.532	6.028
10	Curamycin A	71587265	-9.1	-15.996	6.412	7.093
11	Neoantimycin	585842	-9.1	-9.451	6.541	7.093
12	Frontalamide B	101515038	-9.1	-7.438	5.337	5.969
13	Nybomycin	169159	-9.2	-6.977	6.309	5.957
14	Aranciamycin	15177995	-9.2	-7.41	4.932	5.943
15	Naringenin	932	-9.2	-8.428	6.086	5.963
16	CDA3a	139588787	-9.3	-15.723	7.273	6.661
17	Carquinostatin A	10065662	-9.3	-9.138	5.915	5.983
18	Q27160026	115005	-9.3	-8.021	6.189	5.981
19	Diazaquinomycin A	122105	-9.3	-7.937	6.914	5.968
20	Diazepinomycin	9868980	-9.3	-9.533	7.057	5.961
21	Yanuthone D	10436112	-9.4	-9.945	6.547	5.998
22	Anthrabenzoxocinone	9868865	-9.5	-7.777	6.195	5.956
23	CHEBI:156389	123132247	-9.5	-7.965	5.502	5.961
24	Benastatin A	126408	-9.5	-9.986	6.627	5.956
25	Enterobactin	34231	-9.5	-8.592	5.616	5.979
26	Parabactin	126461	-9.6	-12.559	6.59	7.095
27	Dihydromaltophilin	101934630	-9.7	-8.295	5.809	5.969
28	Isorenieratene	9984420	-9.7	-9.533	6.071	6.059
29	A33853	133379	-9.8	-8.787	6.734	5.976
30	Rebeccamycin	73110	-9.8	-10.05	7.284	6.017
31	Cryptophycin 327	11422411	-10.1	-10.351	6.637	6.132
32	Porphyrinione	6438546	-10.1	---	7.373	6.283
33	Ergovaline	104843	-10.2	-8.029	6.56	6.009
34	Griseusin A	16102131	-10.4	-7.802	5.327	5.963
35	Oviedomycin	5323531	-10.4	-7.324	5.634	5.958
36	Melanin	6325610	-10.4	-7.909	6.912	5.958
37	Erdasporine A	102584105	-10.6	-9.121	7.034	5.971
38	Chartreusin	5281394	-11.3	-9.303	6.813	6.133
39	Esmeraldin B	443757	-12.3	-11.846	7.288	6.028
40	Rhodomycin A	9896436	-15.4	-10.473	5.345	6.947
41	Linearmycin A	15238099	-55.7	-9.501	4.116	6.548

*Bold text indicates compounds that are better than the reference compound

Table 2
ADMET analysis of the reference and screened lead compounds.

S.N.	Compound Name	Lipinski's Rule of Five (R ₀₅)				ADMET			
1	Vandetanib								
2	CHEBI:156389	387.130	474.110	MW	nHA				
3	Oviedomycin	350.040	387.130		6				
4	Esmeraldin B	652.200	5.160	nHD					
5	Diazaquinomycin A	318.100	1.901	logP					
6	Aranciamycin	460.150	2.385		HIA				
7	Anthrabenzoxocinone	544.160	5.160	F20%					
		7	4	F30%					
		12	5	PPB					
		5	0	BBB					
		11	4	CL					
		7	3	Carcinogenicity					
		4	4	hERG blocker					
				Rat Oral Toxicity					

MW (Molecular Weight): Optimal range 100-600, nHA (Number of hydrogen bond acceptors): Optimal range 0-12, nHD (Number of hydrogen bond donors): Optimal range 0-7, logP (Logarithm of the n-octanol/water distribution coefficient): Optimal range 0-3 log mol/L, HIA (Human intestinal absorption), F20% or F30% (Human oral bioavailability of 20% and 30%, respectively), PPB (Plasma protein binding): ≤ 90%: excellent; otherwise: poor, BBB (Blood-brain barrier), Clearance: ≥ 5: excellent; < 5: poor. The prediction probability values are transformed into six symbols: 0-0.1(---) excellent, 0.1-0.3(--), 0.3-0.5(-), 0.5-0.7(+) medium, 0.7-0.9(++) and 0.9-1.0(++) poor.

Machine Learning Analysis: ML-SF such as KDeep, GNINA and RF, aids drug discovery by predicting molecular properties and protein-ligand interactions, enhancing virtual screening and binding affinity prediction²⁷. Table 1 presents the revalidation scores for vandetanib and lead compounds using these ML-SFs. KDeep evaluates protein-ligand interaction based on binding

affinity, where a more negative ΔG value indicates stronger binding. Among the 41 compounds analysed, Curamycin A, CDA3a, Parabactin and Esmeraldin B exhibited more negative dG values than vandetanib (-11.386 kcal/mol). GNINA considers the convolutional neural network (CNN) affinity, with higher scores suggesting stronger predicted binding interactions.

CDA3a, Rebeccamycin, Porphyrinione and Esmeraldin B demonstrated better affinities compared to vandetanib (7.202 kcal/mol) in GNINA analysis. RF scoring prioritizes compounds based on predicted bioactivity, with higher pKa values indicating better performance. In this analysis, Urdamycin E, Splenocin C, Curamycin A, Neoantimycin, CDA3a, Parabactin, Isorenieratene, Cryptophycin 327, Porphyrinione, Chartreusin, Esmeraldin B, Rhodomycin A and Linearmycin A had higher RF scores than vandetanib (6.025). It is worth mentioning that the results indicate that CDA3a and Esmeraldin B outperformed vandetanib across all scoring functions.

ADMET Property Analysis: The drug discovery and development process are inherently complex, involving significant costs, target identification and extensive pre-clinical and clinical trials⁸. Thus, ensuring the efficacy and safety of a drug to manifest its therapeutic effects in the body is crucial³³. Parameters like Lipinski's Rule of Five (Ro5), molecular weight (MW), hydrogen bond donors (nHD) and acceptors (nHA) and logP (lipophilicity) are pivotal for assessing drug-likeness.

Additionally, factors including human intestinal absorption (HIA), fractions absorbed (F20% and F30%), plasma protein binding (PPB), blood-brain barrier penetration (BBB), clearance (CL), carcinogenicity, hERG blocking potential (cardiac safety) and rat oral toxicity were evaluated. Only compounds meeting stringent criteria for these parameters, detailed in table 2, are considered suitable for advancing in drug development, ensuring both efficacy and safety in therapeutic applications.

Interaction analysis and anti-cancer activity prediction: PLIP interactions of reference and lead compounds, assessed through ADMET analysis, are summarized in table 3. According to the PLIP interaction profile, vandetanib, the reference compound, exhibited fewer interactions such as four hydrophobic, three hydrogen bonds and one cationic interaction with RET protein as in fig. 1a. In contrast, esmeraldin B showed highly favourable interactions with the RET protein, involving seven hydrogen bonds, seven hydrophobic interactions and two salt bridges (Figure 1b).

This highlights a clear relationship between increased hydrogen and hydrophobic interactions in protein-ligand complexes of the hit compound facilitating enhanced binding affinity³⁴.

Collectively, esmeraldin B stands out with the highest interaction count, superior docking score, validation across all three ML-SFs and satisfying ADMET properties positioning it as a prime candidate. Further, the anti-cancer potential of the compound was evaluated using the PASS prediction algorithm, as detailed in table 4.

The results indicate a higher probability of active outcomes compared to inactive ones, suggesting a strong likelihood of experimental activity for these compounds¹⁰. The PASS predictions align with findings of significant antineoplastic activity in lung cancer, confirming the potential therapeutic efficacy of the evaluated compounds.

Scaffold analysis: The structural representation of both vandetanib and Esmeraldin B is depicted in figure 2. Literature evidence suggests that vandetanib's quinazoline scaffold targets kinases in tumor growth and angiogenesis, enhancing its overall binding potency¹⁷ (Fig. 2a). Esmeraldin B, a phenazine metabolite from *Streptomyces antibioticus*Tü 2706, features a core structure with three aromatic rings and a 5,10-diaza-anthracene arrangement, known for its potent antitumor properties (Fig. 2b).

This scaffold that showcases characteristic of phenazine derivatives, exhibits diverse biological activities including antibacterial effects and significant antitumor activity attributed to its redox properties²⁹.

Our study highlights Esmeraldin B's efficacy in inhibiting tumor growth, particularly in combination with other anticancer drugs, aligning with the findings from experimental tumor model studies. Studies have revealed that phenazine-5,10-dioxide derivatives, akin to Esmeraldin B, enhance antiproliferative effects in combination with cisplatin by inducing DNA damage and inhibiting DNA topoisomerase II, making them promising candidates for targeted cancer therapies³⁵.

Table 3
PLIP analysis detailing interactions of reference and hit compounds.

S.N.	Compound name	Compound ID	No. of hydrophobic interactions	No. of hydrogen bonds	No. of salt bridges
1	Vandetanib	3081361	4	3	0
2	CHEBI:156389	123132247	8	5	1
3	Oviedomycin	5323531	6	4	0
4	Esmeraldin B	443757	7	7	2
5	Diazaquinomycin A	122105	7	3	0
6	Aranciamycin	15177995	4	5	0
7	Anthrabenzoxinone	9868865	5	5	0

Table 4
Antineoplastic activity of the compounds analyzed using PASS server.

S.N.	Compounds	Pa	Pi	Predicted activity
1	Vandetanib	0.177	0.111	Antineoplastic (non-small cell lung cancer)
2	Esmeraldin B	0.170	0.085	Antineoplastic (lung cancer)

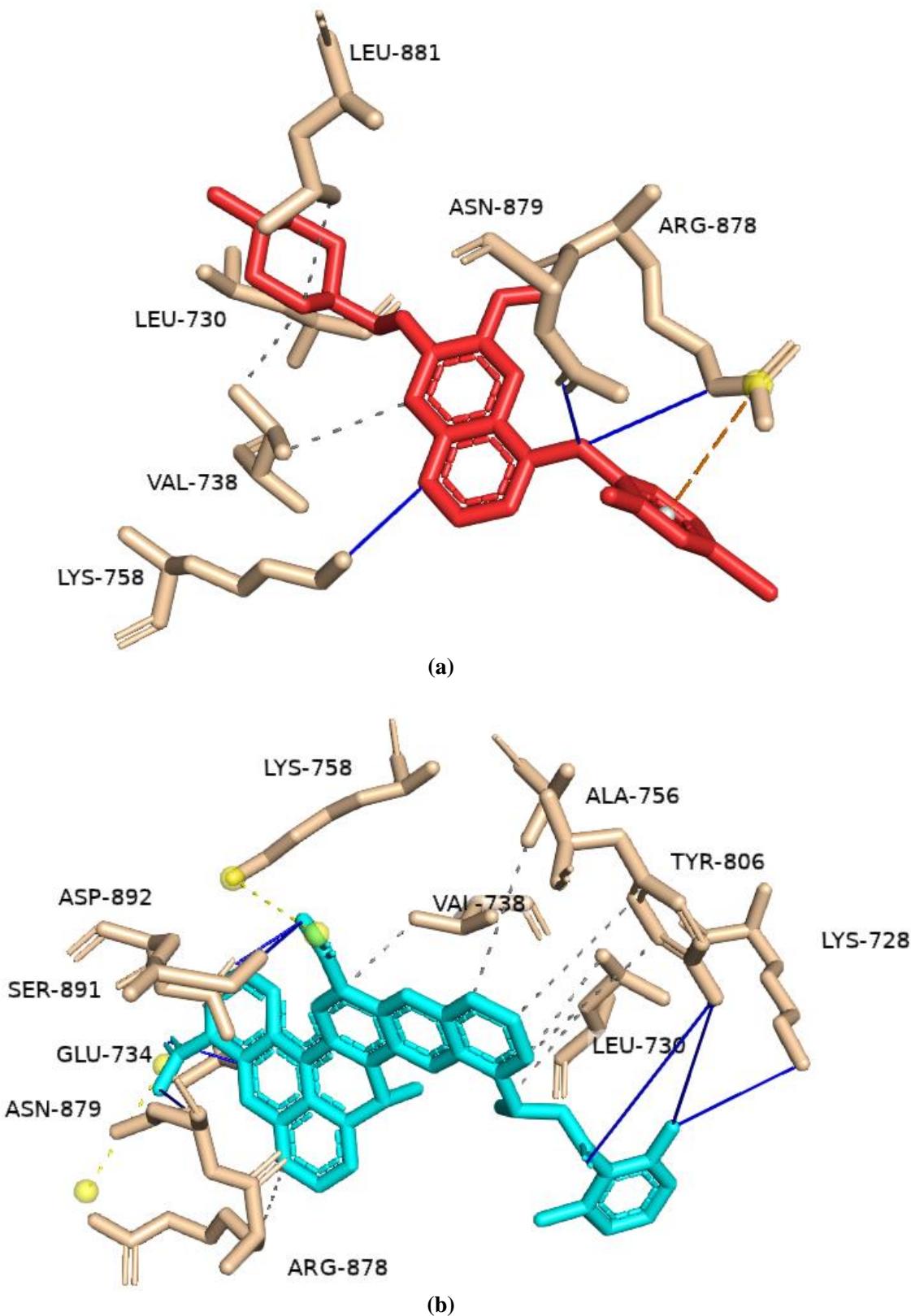


Figure 1: Interaction profile of RET protein (Sandal) in complex with (a) Vandetanib (Red) and (b) Esmeraldin B (Cyan)

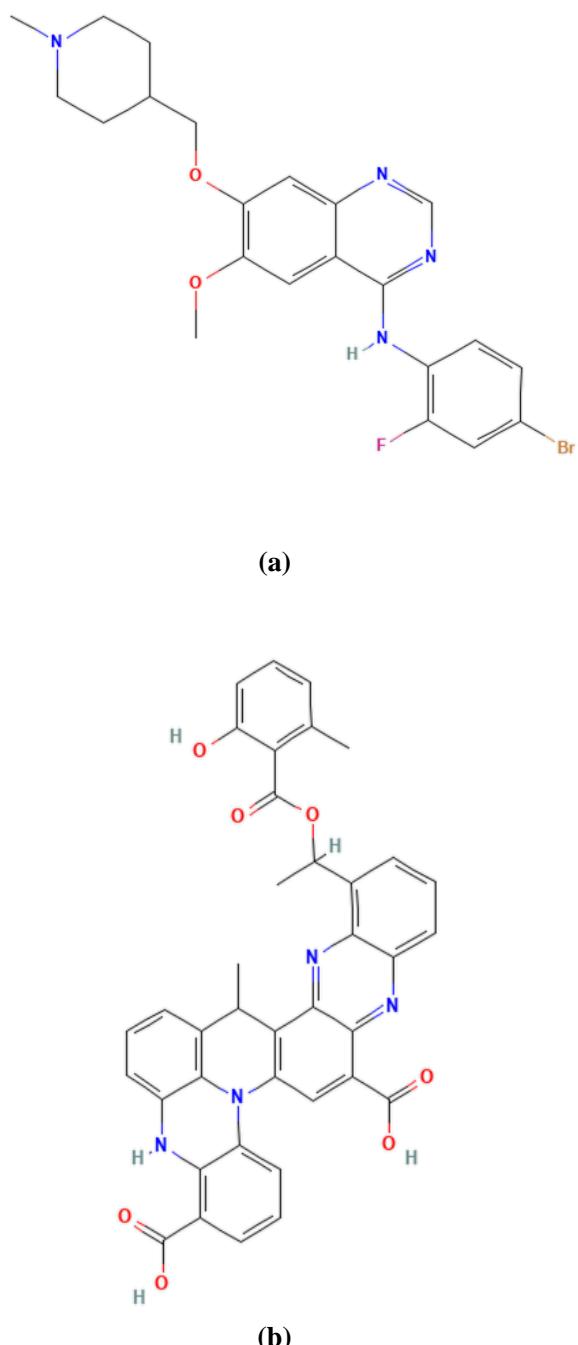


Figure 2: The 2D structures of (a) Vandetanib and (b) Esmeraldin B

Conclusion

The RET gene, often implicated in non-small cell lung cancer (NSCLC), undergoes mutations leading to uncontrolled cell proliferation. Traditional treatments like vandetanib, although targeting RET kinase, show limited efficacy and notable side effects. This study aims to discover alternative RET inhibitors using secondary metabolites from Streptomyces species. Utilizing the antiSMASH database, 3383 metabolites were identified and docked against the RET protein 2IVU. Compounds surpassing vandetanib's docking score were further analyzed for ADMET properties and validated through machine learning tools like KDeep, GNINA and RF score analysis. Esmeraldin B, a phenazine metabolite, emerged as a promising candidate,

demonstrating superior binding affinity and interaction with the RET protein.

Structural analysis revealed Esmeraldin B forming more hydrogen and hydrophobic bonds compared to vandetanib, potentially enhancing its efficacy. The phenazine structure of Esmeraldin B, known for its antitumor properties, further supports its potential as a RET inhibitor. Its significant antineoplastic activity, coupled with favourable ADMET properties, underscores its promise in treating RET-induced NSCLC. This investigation not only highlights the potential of microbial metabolites in cancer therapy but also highlights the importance of integrating computational and biochemical methods in drug discovery. Further *in vivo*

studies and clinical trials are essential to validate Esmeraldin B's therapeutic efficacy and safety, paving the way for novel treatments in lung cancer.

Acknowledgement

The authors thank the Management of Vellore Institute of Technology for providing the facilities to carry out this research work.

References

1. Ackermann C.J., Stock G., Tay R., Dawod M., Gomes F. and Califano R., Targeted therapy for RET-rearranged non-small cell lung cancer: clinical development and future directions, *Onco Targets Ther.*, **12**, 7857–7864 (2019)
2. Adasme M.F., Linnemann K.L., Bolz S.N., Kaiser F., Salentin S., Haupt V.J. and Schroeder M., PLIP 2021: Expanding the scope of the protein–ligand interaction profiler to DNA and RNA, *Nucleic Acids Res.*, **49(W1)**, W530–W534 (2021)
3. Antony A. and Karuppasamy R., An integrated machine learning-based virtual screening strategy for biological weeding in maize field: a case study with HPPD, *JPD*, **130(6)**, 1433–1449 (2023)
4. Antony A., Veerappillai S. and Karuppasamy R., *In-silico* bioprospecting of secondary metabolites from endophytic *Streptomyces* spp. against *Magnaporthe oryzae*, a cereal killer fungus, *3 Biotech*, **14(1)**, 15 (2024)
5. Ballester P.J., Selecting machine-learning scoring functions for structure-based virtual screening, *Drug Discov. Today Technol.*, **32–33**, 81–87 (2019)
6. Blin K., Shaw S., Augustijn H.E., Reitz Z.L., Biermann F., Alanjary M., Fetter A., Terlouw B.R., Metcalf W.W. and Helfrich E.J.N., antiSMASH 7.0: new and improved predictions for detection, regulation, chemical structures and visualisation, *Nucleic Acids Res.*, **51(W1)**, W46–W50 (2023)
7. Bronte G., Ulivi P., Verlicchi A., Cravero P., Delmonte A. and Crinò L., Targeting RET-rearranged non-small-cell lung cancer: future prospects, *Lung Cancer (Auckl.)*, **10**, 27–36 (2019)
8. Daina A., Michelin O. and Zoete V., SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules, *Sci Rep.*, **7**, 42717 (2017)
9. Dallakyan S. and Olson A.J., Small-molecule library screening by docking with PyRx, *Chemical Biology Methods and Protocols*, **1263**, 243–250 (2015)
10. Dasmahapatra U., Kumar C.K., Das S., Subramanian P.T., Murali P., Isaac A.E., Ramanathan K., Balamurali M.M. and Chanda K., *In-silico* molecular modelling, MM/GBSA binding free energy and molecular dynamics simulation study of novel pyrido fused imidazo[4,5-c]quinolines as potential anti-tumor agents, *Front. Chem.*, **10**, 991369 (2022)
11. Dror B., Jurkewitch E. and Cytryn E., State-of-the-art methodologies to identify antimicrobial secondary metabolites in soil bacterial communities-A review, *Soil Biol. Biochem.*, **147**, 107838 (2020)
12. Drusbusky L.M., Dawar R., Rodriguez E. and Ikpeazu C.V., Therapeutic strategies in METex14 skipping mutated non-small cell lung cancer, *J. Hematol. Onco.*, **14(1)**, 129 (2021)
13. Druzhilovskiy D.S., Rudik A.V., Filimonov D.A., Gloriozova T.A., Lagunin A.A., Dmitriev A.V., Pogodin P.V., Dubovskaya V.I., Ivanov S.M., Tarasova O.A., Bezhentsev V.M., Murtazalieva K.A., Semin M.I., Maiorov I.S., Gaur A.S., Sastry G.N. and Poroikov V.V., Computational platform Way2Drug: from the prediction of biological activity to drug repurposing, *Russ. Chem. Bull.*, **66(10)**, 1832–1841 (2017)
14. Flanigan J., Deshpande H. and Gettinger S., Current status of vandetanib (ZD6474) in the treatment of non-small cell lung cancer, *Biol.: Targets Ther.*, **4**, 237–243 (2010)
15. Friedlaender A., Addeo A., Russo A., Gregorc V., Cortinovis D. and Rolfo C.D., Targeted therapies in early stage NSCLC: hype or hope?, *Int. J. Mol. Sci.*, **21(17)**, 6329 (2020)
16. Jenkins R., Walker J. and Roy U.B., Plain language summary of 2022 cancer statistics: focus on lung cancer, *Future Oncol.*, **5**, 1–11 (2023)
17. Jia C.C., Chen W., Feng Z.L. and Liu, Z.P., Recent developments of RET protein kinase inhibitors with diverse scaffolds as hinge binders, *Future Med. Chem.*, **13(1)**, 45–62 (2021)
18. Jiménez J., Škalič M., Martínez-Rosell G. and De Fabritiis G., KDEEP: Protein-Ligand Absolute Binding Affinity Prediction via 3D-Convolutional Neural Networks, *J. Chem. Inf. Model.*, **58(2)**, 287–296 (2018)
19. Kim S., Chen J., Cheng T., Gindulyte A., He J., He S., Li Q., Shoemaker B.A., Thiessen P.A., Yu B., Zaslavsky L., Zhang J. and Bolton E.E., PubChem in 2021: New data content and improved web interfaces, *Nucleic Acids Res.*, **49(D1)**, D1388–D1395 (2021)
20. Krishnamoorthy H.N.R. and Karuppasamy R., A multitier virtual screening of antagonists targeting PD-1/PD-L1 interface for the management of triple-negative breast cancer, *Medical Oncology*, **40(11)**, 1–14 (2023)
21. Macip G., Garcia-Segura P., Mestres-Truyol J., Saldivar-Espinoza B., Ojeda-Montes M.J., Gimeno A., Cereto-Massagué A., Garcia-Vallvé S. and Pujadas G., Haste makes waste: a critical review of docking-based virtual screening in drug repurposing for SARS-CoV-2 main protease (M-pro) inhibition, *Med. Res. Rev.*, **42(2)**, 744–769 (2022)
22. Martucciello G., Lerone M., Bricco L., Tonini G.P., Lombardi L., Del Rossi C.G. and Bernasconi S., Multiple endocrine neoplasias type 2B and RET proto-oncogene, *Ital. J. Pediatr.*, **38**, 1–11 (2012)
23. McNutt A.T., Francoeur P., Aggarwal R., Masuda T., Meli R., Ragoza M., Sunseri J. and Koes D.R., GNINA 1.0: molecular docking with deep learning, *J. Cheminf.*, **13(1)**, 1–20 (2021)
24. Montecillo J.A.V. and Bae H., *In silico* analysis of koranimine, a cyclic imine compound from *Peribacillus frigoritolerans* reveals

potential nematicidal activity, *Scientific Reports*, **12(1)**, 18883 (2022)

25. Moradi M., Mousavi A., Emamgholipour Z., Giovannini J., Moghimi S., Peytam F., Honarmand A., Bach S. and Foroumadi A., Quinazoline-based VEGFR-2 inhibitors as potential anti-angiogenic agents: A contemporary perspective of SAR and molecular docking studies, *Eur. J. Med. Chem.*, **259**, 115626 (2023)

26. Murali P. and Karuppasamy R., Exploration of natural product database for the identification of potent inhibitor against IDH2 mutational variants for glioma therapy, *J. Mol. Model.*, **29(1)** (2023)

27. Murali P. and Karuppasamy R., Exploring the potential of nutraceutical to combat gliomas: focus on mIDH2 protein, *Front. Phys.*, **12**, 1345834 (2024)

28. Naughton L.M., Romano S., O’Gara F. and Dobson A.D.W., Identification of secondary metabolite gene clusters in the *Pseudovibrio* genus reveals encouraging biosynthetic potential toward the production of novel bioactive compounds, *Front. Microbiol.*, **8**, 1494 (2017)

29. Pathak P., Naumovich V., Grishina M., Shukla P.K., Verma A. and Potemkin V., Quinazoline based 1, 3, 5-triazine derivatives as cancer inhibitors by impeding the phosphorylated RET tyrosine kinase pathway: Design, synthesis, docking and QSAR study, *Arch. Pharm.*, **352(9)**, 1900053 (2019)

30. Ramesh P., Karuppasamy R. and Veerappillai S., Machine learning driven drug repurposing strategy for identification of potential RET inhibitors against non-small cell lung cancer, *Medical Oncology*, **40(1)**, 56 (2022)

31. Ramesh P., Shin W.H. and Veerappillai S., Discovery of a potent candidate for ret-specific non-small-cell lung cancer—a combined in silico and in vitro strategy, *Pharmaceutics*, **13(11)**, 1775 (2021)

32. Ramesh P. and Veerappillai S., Designing novel compounds for the treatment and management of RET-positive non-small cell lung cancer—fragment based drug design strategy, *Molecules*, **27(5)**, 1590 (2022)

33. Rohini K., Ramanathan K. and Shanthi V., Multi-Dimensional Screening Strategy for Drug Repurposing with Statistical Framework - A New Road to Influenza Drug discovery, *Cell Biochem. Biophys.*, **77(4)**, 319–333 (2019)

34. Roskoski Jr. R. and Sadeghi-Nejad A., Role of RET protein-tyrosine kinase inhibitors in the treatment RET-driven thyroid and lung cancers, *Pharmacol Res.*, **128**, 1–17 (2018)

35. Rui Z., Ye M., Wang S., Fujikawa K., Akerele B., Aung M., Floss H.G., Zhang W. and Yu T.W., Insights into a divergent phenazine biosynthetic pathway governed by a plasmid-born esmeraldin gene cluster, *Chem. Biol.*, **19(9)**, 1116–1125 (2012)

36. Safitri Ika Octariyani, Megasari Kartini, Sardjono, Widada Jaka and Cahyanto Muhammad Nur, Effect of Gamma Irradiation on *Aspergillus tamarii* FNCC 6151 to enhance Alpha-Amylase and Glucoamylase Production, *Res. J. Biotech.*, **18(1)**, 112–116 (2023)

37. Ubani A., Agwom F., Shehu N.Y., Luka P., Umera A., Umar U., Omale S., Nnadi N.E. and Aguiyi J.C., Molecular docking analysis of some phytochemicals on two SARS-CoV-2 targets, *bioRxiv*, 2003–2020 (2020)

38. Wójcikowski M., Ballester P.J. and Siedlecki P., Performance of machine-learning scoring functions in structure-based virtual screening, *Sci Rep.*, **7(1)**, 46710 (2017)

39. Xiong G., Wu Z., Yi J., Fu L., Yang Z., Hsieh C., Yin M., Zeng X., Wu C., Lu A., Chen X., Hou T. and Cao D., ADMETlab 2.0: An integrated online platform for accurate and comprehensive predictions of ADMET properties, *Nucleic Acids Res.*, **49(W1)**, W5–W14 (2021)

40. Yan J., Liu W., Cai J., Wang Y., Li D., Hua H. and Cao H., Advances in phenazines over the past decade: review of their pharmacological activities, mechanisms of action, biosynthetic pathways and synthetic strategies, *Mar Drugs*, **19(11)**, 610 (2021)

41. Yoh K., Seto T., Satouchi M., Nishio M., Yamamoto N., Murakami H., Nogami N., Matsumoto S., Kohno T. and Tsuta K., Vandetanib in patients with previously treated RET-rearranged advanced non-small-cell lung cancer (LURET): an open-label, multicentre phase 2 trial, *The Lancet*, **5(1)**, 42–50 (2017).

(Received 09th October 2024, accepted 12th December 2024)