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Abstract

Lung cancer is the second most prevalent cancer
globally, with significant mortality rates among both
smokers and nonsmokers. Targeting RET gene, which
has been linked to the onset of non-small cell lung
cancer (NSCLC) cases, offers a novel therapeutic
avenue. Vandetanib, a tyrosine kinase inhibitor (TKI)
of the RET gene, has several adverse effects, including
skin toxicity, EGFR-induced diarrhea and VEGFR-
related hypertension. Thus, we sought to identify
promising candidates for RET inhibition employing a
combination of in silico techniques. In this regard, we
intend to investigate secondary metabolites from
Streptomyces species, which are renowned for their
therapeutic potential. A total of 3383 compounds
produced by the Streptomyces species under extreme
conditions were identified utilizing the antiSMASH
database. Through molecular docking, the compounds
were screened against the RET protein, identifying 43
compounds with better docking scores than vandetanib
(-8.7 kcal/mol).

Subsequent ADMET analysis and machine learning
validation using KDEEP, GNINA and RF scoring
functions highlighted Esmeraldin B as a leading
candidate. Esmeraldin B demonstrated superior
binding affinity and interaction profiles, establishing
five hydrogen bonds and hydrophobic interactions.
Further, the scaffold analysis revealed that Esmeraldin
B's phenazine moiety contributes to its potent
antitumor properties. Collectively, these findings
suggest that Esmeraldin B holds promise as a more
effective and potentially safer alternative to vandetanib
for RET-positive NSCLC. However, extensive in vitro
and in vivo studies are required to confirm its
therapeutic potential and to ensure safety for clinical
and therapeutic applications.

Keywords: Non-small cell lung cancer, REarranged during
Transfection, Tyrosine kinase inhibitors, ML-SF, ADMET,
Molecular Docking.

Introduction

Lung cancer is the second most common cancer worldwide,
with the highest incidence. While smoking accounts for over
80% of cases, lung cancer remains a top cause of cancer
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related deaths among non-smokers®6. About 2% of patients
have REarranged during Transfection (RET) mutations,
primarily in non-small cell lung cancer (NSCLC), often with
minimal smoking history and younger age”*2. The RET gene
has at least 26 mutations that can cause illnesses, including
multiple endocrine neoplasia type 2 (MENZ2), which may
result from activating point mutations??2. There is a
substantial correlation between the site of the point mutation
and the disease phenotype.

Chromosome rearrangements can also cause constitutive
activation of the RET kinase, leading to fusion genes, which
are mostly linked to NSCLC?. Adding chemotherapy to
surgery as adjuvant or neoadjuvant treatment can improve
survival rates by roughly 5% at 5 years. However, these are
generally not as specific as targeted therapies®®. Targeted
therapies against RET proteins have shown improved
outcomes, including increased response rates and prolonged
progression-free survival for patients with RET-positive
NSCLC*?,

Multiple Kinase Inhibitors (MKIs) like cabozantinib and
vandetanib initially offered hope for treating RET-positive
NSCLC patients. Vandetanib functions as a treatment for
RET rearranged lung cancer by targeting the abnormal
activity of RET kinase that leads to cancer®!. It inhibits ATP-
binding sites, disrupting downstream signaling pathways for
uncontrolled cell growth, survival and metastasis. When
vandetanib was administered along with appropriate
regimens of chemotherapy, patients exhibited better
response’*. Unfortunately, these nonselective MKIs showed
limited durability in responses and caused off-target side
effects such as skin toxicity and diarrhea and posed
challenges for patient adherence in NSCLC®*2. Thus,
alternative therapies are needed to counteract this issue.

This study aims to address the limitations of current drugs
by investigating new generations of RET inhibitors,
particularly medicinal compounds from bacteria in extreme
environments with potent anti-cancer effects against the
mutated RET gene. In this context, in silico approaches play
a crucial role, allowing us to screen vast libraries of bacterial
compounds rapidly and efficiently?®. These computational
techniques facilitate the identification of potential RET
inhibitors by predicting their binding affinities and
specificities. Additionally, it can identify the interactions
between bacterial compounds and the RET protein,
providing insights into their mechanisms of action*. These
approaches help to prioritize compounds for experimental
validation and to optimize lead compounds by predicting
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their pharmacokinetic and pharmacodynamic properties,
thereby enhancing the development of new RET inhibitors.

Material and Methods

Dataset Retrieval: Our investigation into a potential drug
compound targeting the 2IVU protein, commenced by
utilizing the antiSMASH Version 7.0 database®.
antiSMASH is the first all-encompassing pipeline that
detects biosynthetic loci across a wide array of secondary
metabolite classes such as polyketides, non-ribosomal
peptides and many others. Our study focused predominantly
on secondary metabolites produced by Streptomyces species
thriving in challenging environments. Specifically,
Streptomyces sp. Al44, Streptomyces sp. KY75,
Streptomyces sp. INR7, Streptomyces sp. Mgl, Streptomyces
huasconensis and Streptomyces leeuwenhoekii were the
target species. Their respective NCBI sequences were
provided as input data and detection strictness was
maintained at a rigorous level.

Additional features, including MIGB Comparison and
Cluster Blast, were enabled before submission. The result
obtained comprised of the whole genome sequence of the
species from which the secondary metabolites produced by
each gene were identified. For each identified secondary
metabolite, detailed information concerning compound
structure, PubChem ID, NPAtlas ID and the presence of 2D
or 3D structures were systematically collected and
documented.

Protein preparation and Molecular Docking: The protein
structure was obtained from the Protein Data Bank (PDB ID:
21VU) and it was prepared using BIOVIA Discovery Studio.
Water molecules and heteroatoms were removed and polar
hydrogen atoms were added. The three-dimensional
structure of the reference compound vandetanib (ID -
3081361) was retrieved from PubChem in structural data
format®®. The structures of the prepared 21\VVU protein and the
compounds to be docked were first loaded onto PyRx
software, where molecular docking was performed using the
AutoDock Vina mode to identify potential binding sites and
ligand energies®. The parameters such as grid size and
scoring functions were adjusted. The docking simulation
was initiated to generate possible binding conformations out
of which the most stable structure was selected for analysis.
Compounds with docking scores more negative than
vandetanib were selected for further analysis?!.

ADMET analysis: Pharmacokinetic parameters which
control a drug's capacity to reach target proteins in the body
and how long it stays in the bloodstream, are included in
ADMET (absorption, distribution, metabolism, elimination
and toxicity) analysis?®%, ADMET procedures are now
commonly used in early-stage drug discovery to reduce
attrition rates, emphasizing the importance of addressing
these factors upfront to enhance drug efficacy and safety
profiles. ADMET Lab 2.0 simplifies this process by
providing comprehensive analysis of these properties®®. The
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screened compounds were subjected to ADMET analysis to
analyze the physicochemical properties of these
compounds.The parameters including MW, nHA, nHD,
LogP, HIA, F20%, F30%, PBB, BBB, CL, carcinogenicity,
hERG blocker, rat oral toxicity were evaluated.

Validation of results using Machine Learning Scoring
Functions: In recent years, machine-learning scoring
functions (ML-SFs) based on protein-ligand complexes
have shown substantial promise in specialized small-scale
investigations®>. To validate the docking results, three
prominent ML-SFs such as KDeep, GNINA and RF Score
were utilised. KDeep is a fast machine-learning approach for
predicting binding affinities using State-of-the-Art 3D-
convolutional neural networks®®. GNINA utilizes an
ensemble of convolutional neural networks (CNNs) as a
scoring function. A CNN scoring function automatically
learns the key features of protein-ligand interactions that
correlates with binding?. RF score calculates the binding
affinity of a protein-ligand pair in a complex®. Higher RF
score value indicates better binding of the ligand into the
binding site of the protein.

Interaction analysis and anticancer activity-prediction:
In the drug discovery process, interaction analysis plays a
pivotal role in understanding complex biological processes
and mechanisms®. The docked configurations of each
compound in PDB format were uploaded to PLIP for
analysis?. PLIP provides visual representation of the protein-
ligand complex, the interaction chain and different
interaction types between each compound and the target
protein. After perfoming PLIP analysis, the PASS server was
used to predict the biological spectrum of the screened
compounds. Using Bayesian estimates, the server predicts
the likelihood of actives (Pa) and inactives (Pi) to
differentiate the biological activities of hit compounds?*3.

Results and Discussion

Mining  Streptomyces genomes for anti-cancer
metabolites: antiSMASH7.0 is a renowned online genome
mining tool used for predicting secondary metabolites
synthesized by bacteria. The primary types of gene clusters
involved in this biosynthesis include non-ribosomal peptide
synthetases (NRPS), polyketide synthases (PKS), terpenes,
siderophores, lanthipeptides and ribosomally synthesized
and post-translationally modified peptides (RiPP-like).
Previous studies have indicated that NRPS, PKS and terpene
gene clusters are among the most abundant, containing a vast
array of bioactive compounds with varied functions
including plant protection*.28,

In total, 73 types of biosynthetic gene clusters (BGCs) were
identified in the secondary metabolites produced by various
Streptomyces species. It is important to note that organisms
with multiple open reading frames (ORFs) typically encode
a greater number of gene cluster regions?*. The genome
analysis of all Streptomyces spp. produced a total of 3383
putative secondary metabolites.
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Molecular docking and selection of candidate
compounds: Molecular docking aids in the identification of
potential drug candidates by predicting the binding affinity
of small molecules to a specific protein or receptor®’. The
RET-based protein 2IVU was prepared and docked with
compounds after energy minimization using PyRXx.
Vandetanib was also docked against the target protein,
yielding a docking score of -8.7 kcal/mol. The docking
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scores of the ligands were compared to this value, selecting
those with scores lower (more negative) than vandetanib for
further investigation. As shown in table 1, based on the
threshold prescribed, out of 3383 compounds, 40
compounds were found to have lower docking scores in the
range of -8.700 kcal/mol to -55.700 kcal/mol than
vandetanib.

Table 1
Docking and ML-SF scores of the reference and screened lead compounds.
S.N. Compound name Compound ID Docking ML-SF
Score KDeep GNINA RF
dG (kcal/mol) CNN affinity | pK units

1 Vandetanib 3081361 -8.7 -11.386 7.202 6.025
2 Urdamycin E 175975 -8.7 -9.805 6.718 6.209
3 Kinamycin 161863 -8.7 -8.776 6.707 5.989
4 Cyanogramide 102143687 -8.9 -7.07 5.611 5.95
5 AQ 256 12435249 -8.9 -7.2 4.932 5.971
6 AB879369 135957253 -9 -7.466 5.176 5.955
7 Dehydroxynocardamine 11606728 -9 -6.636 6.17 5.961
8 Aurachin A 6439172 -9.1 -8.558 6.261 5.966
9 Splenocin C 42626285 -9.1 -8.654 6.532 6.028
10 Curamycin A 71587265 -9.1 -15.996 6.412 7.093
11 Neoantimycin 585842 -9.1 -9.451 6.541 7.093
12 Frontalamide B 101515038 -9.1 -7.438 5.337 5.969
13 Nybomycin 169159 -9.2 -6.977 6.309 5.957
14 Aranciamycin 15177995 -9.2 -7.41 4.932 5.943
15 Naringenin 932 -9.2 -8.428 6.086 5.963
16 CDA3a 139588787 -9.3 -15.723 7.273 6.661
17 Carquinostatin A 10065662 -9.3 -9.138 5.915 5.983
18 Q27160026 115005 -9.3 -8.021 6.189 5.981
19 Diazaquinomycin A 122105 -9.3 -7.937 6.914 5.968
20 Diazepinomicin 9868980 -9.3 -9.533 7.057 5.961
21 Yanuthone D 10436112 -9.4 -9.945 6.547 5.998
22 Anthrabenzoxocinone 9868865 -9.5 -1.777 6.195 5.956
23 CHEBI:156389 123132247 -9.5 -7.965 5.502 5.961
24 Benastatin A 126408 -9.5 -9.986 6.627 5.956
25 Enterobactin 34231 -9.5 -8.592 5.616 5.979
26 Parabactin 126461 -9.6 -12.559 6.59 7.095
27 Dihydromaltophilin 101934630 -9.7 -8.295 5.809 5.969
28 Isorenieratene 9984420 -9.7 -9.533 6.071 6.059
29 A33853 133379 -9.8 -8.787 6.734 5.976
30 Rebeccamycin 73110 -9.8 -10.05 7.284 6.017
31 Cryptophycin 327 11422411 -10.1 -10.351 6.637 6.132
32 Porphyrinione 6438546 -10.1 7.373 6.283
33 Ergovaline 104843 -10.2 -8.029 6.56 6.009
34 Griseusin A 16102131 -10.4 -7.802 5.327 5.963
35 Oviedomycin 5323531 -10.4 -1.324 5.634 5.958
36 Melanin 6325610 -10.4 -7.909 6.912 5.958
37 Erdasporine A 102584105 -10.6 -9.121 7.034 5.971
38 Chartreusin 5281394 -11.3 -9.303 6.813 6.133
39 Esmeraldin B 443757 -12.3 -11.846 7.288 6.028
40 Rhodomycin A 9896436 -15.4 -10.473 5.345 6.947
41 Linearmycin A 15238099 -55.7 -9.501 4.116 6.548

*Bold text indicates compounds that are better than the reference compound
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Table 2
ADMET analysis of the reference and screened lead compounds.
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MW (Molecular Weight): Optimal range 100-600, nHA (Number of hydrogen bond acceptors): Optimal range 0-12, nHD (Number
of hydrogen bond donors): Optimal range 0-7, logP (Logarithm of the n-octanol/water distribution coefficient): Optimal range 0-3
log mol/L, HIA (Human intestinal absorption), F20% or F30% (Human oral bioavailability of 20% and 30%, respectively), PPB
(Plasma protein binding): < 90%: excellent; otherwise: poor, BBB (Blood-brain barrier), Clearance: > 5: excellent; < 5: poor. The
prediction probability values are transformed into six symbols: 0-0.1(---) excellent, 0.1-0.3(--), 0.3-0.5(-), 0.5-0.7(+) medium, 0.7-

0.9(++) and 0.9-1.0(+++) poor.

Machine Learning Analysis: ML-SF such as KDeep,
GNINA and RF, aids drug discovery by predicting
molecular properties and protein-ligand interactions,
enhancing virtual screening and binding affinity
prediction?”. Table 1 presents the revalidation scores for
vandetanib and lead compounds using these ML-SFs.
KDeep evaluates protein-ligand interaction based on binding
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affinity, where a more negative AG value indicates stronger
binding. Among the 41 compounds analysed, Curamycin A,
CDA3a, Parabactin and Esmeraldin B exhibited more
negative dG values than vandetanib (-11.386 kcal/mol).
GNINA considers the convolutional neural network (CNN)
affinity, with higher scores suggesting stronger predicted
binding interactions.
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CDA3a, Rebeccamycin, Porphyrinione and Esmeraldin B
demonstrated better affinities compared to vandetanib
(7.202 kcal/mol) in GNINA analysis. RF scoring prioritizes
compounds based on predicted bioactivity, with higher pKa
values indicating better performance. In this analysis,
Urdamycin E, Splenocin C, Curamycin A, Neoantimycin,
CDA3a, Parabactin, Isorenieratene, Cryptophycin 327,
Porphyrinione, Chartreusin, Esmeraldin B, Rhodomycin A
and Linearmycin A had higher RF scores than vandetanib
(6.025). It is worth mentioning that the results indicate that
CDA3a and Esmeraldin B outperformed vandetanib across
all scoring functions.

ADMET Property Analysis: The drug discovery and
development process are inherently complex, involving
significant costs, target identification and extensive pre-
clinical and clinical trials®. Thus, ensuring the efficacy and
safety of a drug to manifest its therapeutic effects in the body
is crucial®. Parameters like Lipinski’s Rule of Five (Ro5),
molecular weight (MW), hydrogen bond donors (nHD) and
acceptors (nHA) and logP (lipophilicity) are pivotal for
assessing drug-likeness.

Additionally, factors including human intestinal absorption
(HIA), fractions absorbed (F20% and F30%), plasma protein
binding (PPB), blood-brain barrier penetration (BBB),
clearance (CL), carcinogenicity, hERG blocking potential
(cardiac safety) and rat oral toxicity were evaluated. Only
compounds meeting stringent criteria for these parameters,
detailed in table 2, are considered suitable for advancing in
drug development, ensuring both efficacy and safety in
therapeutic applications.

Interaction analysis and anti-cancer activity prediction:
PLIP interactions of reference and lead compounds, assessed
through ADMET analysis, are summarized in table 3.
According to the PLIP interaction profile, vandetanib, the
reference compound, exhibited fewer interactions such as
four hydrophobic, three hydrogen bonds and one cationic
interaction with RET protein as in fig. la. In contrast,
esmeraldin B showed highly favourable interactions with the
RET protein, involving seven hydrogen bonds, sevem
hydrophobic interactions and two salt bridges (Figure 1b).

Res. J. Chem. Environ.

This highlights a clear relationship between increased
hydrogen and hydrophobic interactions in protein-ligand
complexes of the hit compound facilitating enhanced
binding affinity.

Collectively, esmeraldin B stands out with the highest
interaction count, superior docking score, validation across
all three ML-SFs and satisfying ADMET properties
positioning it as a prime candidate. Further, the anti-cancer
potential of the compound was evaluated using the PASS
prediction algorithm, as detailed in table 4.

The results indicate a higher probability of active outcomes
compared to inactive ones, suggesting a strong likelihood of
experimental activity for these compounds'®. The PASS
predictions align with findings of significant antineoplastic
activity in lung cancer, confirming the potential therapeutic
efficacy of the evaluated compounds.

Scaffold analysis: The structural representation of both
vandetanib and Esmeraldin B is depicted in figure 2.
Literature evidence suggests that vandetanib's quinazoline
scaffold targets kinases in tumor growth and angiogenesis,
enhancing its overall binding potency!’ (Fig. 2a).
Esmeraldin B, a phenazine metabolite from Streptomyces
antibioticusTu 2706, features a core structure with three
aromatic rings and a 5,10-diaza-anthracene arrangement,
known for its potent antitumor properties (Fig. 2b).

This scaffold that showcases characteristic of phenazine
derivatives, exhibits diverse biological activities including
antibacterial effects and significant antitumor activity
attributed to its redox properties°.

Our study highlights Esmeraldin B's efficacy in inhibiting
tumor growth, particularly in combination with other
anticancer drugs, aligning with the findings from
experimental tumor model studies. Studies have revealed
that phenazine-5,10-dioxide derivatives, akin to Esmeraldin
B, enhance antiproliferative effects in combination with
cisplatin by inducing DNA damage and inhibiting DNA
topoisomerase Il, making them promising candidates for
targeted cancer therapies®.

Table 3
PLIP analysis detailing interactions of reference and hit compounds.

S.N. Compound name Compound ID No. of No. of No. of salt
hydrophobic hydrogen bridges
interactions bonds

1 Vandetanib 3081361 4 3 0
2 CHEBI:156389 123132247 8 5 1
3 Oviedomycin 5323531 6 4 0
4 Esmeraldin B 443757 7 7 2
5 Diazaquinomycin A 122105 7 3 0
6 Aranciamycin 15177995 4 5 0
7 Anthrabenzoxinone 9868865 5 5 0

https://doi.org/10.25303/2911rjce09017
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Table 4
Antineoplastic activity of the compounds analyzed using PASS server.
S.N. Compounds Pa Pi Predicted activity
1 Vandetanib 0.177 | 0.111 Antineoplastic (non-small cell lung cancer)
2 Esmeraldin B 0.170 | 0.085 Antineoplastic (lung cancer)
LEU-881

LEU-730

(@)

LYS-758

ASP-892

ARG-878

(b)
Figure 1: Interaction profile of RET protein (Sandal) in complex with (a) Vandetanib (Red) and
(b) Esmeraldin B (Cyan)
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Conclusion
The RET gene, often implicated in non-small cell lung
cancer (NSCLC), undergoes mutations leading to

uncontrolled cell proliferation. Traditional treatments like
vandetanib, although targeting RET kinase, show limited
efficacy and notable side effects. This study aims to discover
alternative RET inhibitors using secondary metabolites from
Streptomyces species. Utilizing the antiSMASH database,
3383 metabolites were identified and docked against the
RET protein 2IVU. Compounds surpassing vandetanib’s
docking score were further analyzed for ADMET properties
and validated through machine learning tools like KDeep,
GNINA and RF score analysis. Esmeraldin B, a phenazine
metabolite, emerged as a promising candidate,

https://doi.org/10.25303/2911rjce09017

(b)
Figure 2: The 2D structures of (a) Vandetanib and (b) Esmeraldin B

demonstrating superior binding affinity and interaction with
the RET protein.

Structural analysis revealed Esmeraldin B forming more
hydrogen and hydrophobic bonds compared to vandetanib,
potentially enhancing its efficacy. The phenazine structure
of Esmeraldin B, known for its antitumor properties, further
supports its potential as a RET inhibitor. Its significant
antineoplastic activity, coupled with favourable ADMET
properties, underscores its promise in treating RET-induced
NSCLC. This investigation not only highlights the potential
of microbial metabolites in cancer therapy but also
highlights the importance of integrating computational and
biochemical methods in drug discovery. Further in vivo
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studies and clinical trials are essential to validate Esmeraldin
B’s therapeutic efficacy and safety, paving the way for novel
treatments in lung cancer.
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