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Abstract 
Lung cancer is the second most prevalent cancer 

globally, with significant mortality rates among both 

smokers and nonsmokers. Targeting RET gene, which 

has been linked to the onset of non-small cell lung 

cancer (NSCLC) cases, offers a novel therapeutic 

avenue. Vandetanib, a tyrosine kinase inhibitor (TKI) 

of the RET gene, has several adverse effects, including 

skin toxicity, EGFR-induced diarrhea and VEGFR-

related hypertension. Thus, we sought to identify 

promising candidates for RET inhibition employing a 

combination of in silico techniques. In this regard, we 

intend to investigate secondary metabolites from 

Streptomyces species, which are renowned for their 

therapeutic potential. A total of 3383 compounds 

produced by the Streptomyces species under extreme 

conditions were identified utilizing the antiSMASH 

database. Through molecular docking, the compounds 

were screened against the RET protein, identifying 43 

compounds with better docking scores than vandetanib 

(-8.7 kcal/mol). 

 

Subsequent ADMET analysis and machine learning 

validation using KDEEP, GNINA and RF scoring 

functions highlighted Esmeraldin B as a leading 

candidate. Esmeraldin B demonstrated superior 

binding affinity and interaction profiles, establishing 

five hydrogen bonds and hydrophobic interactions. 

Further, the scaffold analysis revealed that Esmeraldin 

B's phenazine moiety contributes to its potent 

antitumor properties. Collectively, these findings 

suggest that Esmeraldin B holds promise as a more 

effective and potentially safer alternative to vandetanib 

for RET-positive NSCLC. However, extensive in vitro 

and in vivo studies are required to confirm its 

therapeutic potential and to ensure safety for clinical 

and therapeutic applications. 
 

Keywords: Non-small cell lung cancer, REarranged during 

Transfection, Tyrosine kinase inhibitors, ML-SF, ADMET, 

Molecular Docking. 

 

Introduction 
Lung cancer is the second most common cancer worldwide, 

with the highest incidence. While smoking accounts for over 

80% of cases, lung cancer remains a top cause of cancer 

related deaths among non-smokers16. About 2% of patients 

have REarranged during Transfection (RET) mutations, 

primarily in non-small cell lung cancer (NSCLC), often with 

minimal smoking history and younger age7,12. The RET gene 

has at least 26 mutations that can cause illnesses, including 

multiple endocrine neoplasia type 2 (MEN2), which may 

result from activating point mutations22. There is a 

substantial correlation between the site of the point mutation 

and the disease phenotype.  

 

Chromosome rearrangements can also cause constitutive 

activation of the RET kinase, leading to fusion genes, which 

are mostly linked to NSCLC36. Adding chemotherapy to 

surgery as adjuvant or neoadjuvant treatment can improve 

survival rates by roughly 5% at 5 years. However, these are 

generally not as specific as targeted therapies15. Targeted 

therapies against RET proteins have shown improved 

outcomes, including increased response rates and prolonged 

progression-free survival for patients with RET-positive 

NSCLC1,12.  

 

Multiple Kinase Inhibitors (MKIs) like cabozantinib and 

vandetanib initially offered hope for treating RET-positive 

NSCLC patients. Vandetanib functions as a treatment for 

RET rearranged lung cancer by targeting the abnormal 

activity of RET kinase that leads to cancer41. It inhibits ATP-

binding sites, disrupting downstream signaling pathways for 

uncontrolled cell growth, survival and metastasis. When 

vandetanib was administered along with appropriate 

regimens of chemotherapy, patients exhibited better 

response14. Unfortunately, these nonselective MKIs showed 

limited durability in responses and caused off-target side 

effects such as skin toxicity and diarrhea and posed 

challenges for patient adherence in NSCLC32. Thus, 

alternative therapies are needed to counteract this issue. 

 

This study aims to address the limitations of current drugs 

by investigating new generations of RET inhibitors, 

particularly medicinal compounds from bacteria in extreme 

environments with potent anti-cancer effects against the 

mutated RET gene. In this context, in silico approaches play 

a crucial role, allowing us to screen vast libraries of bacterial 

compounds rapidly and efficiently20. These computational 

techniques facilitate the identification of potential RET 

inhibitors by predicting their binding affinities and 

specificities. Additionally, it can identify the interactions 

between bacterial compounds and the RET protein, 

providing insights into their mechanisms of action4. These 

approaches help to prioritize compounds for experimental 

validation and to optimize lead compounds by predicting 
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their pharmacokinetic and pharmacodynamic properties, 

thereby enhancing the development of new RET inhibitors. 

 

Material and Methods 
Dataset Retrieval: Our investigation into a potential drug 

compound targeting the 2IVU protein, commenced by 

utilizing the antiSMASH Version 7.0 database6. 

antiSMASH is the first all-encompassing pipeline that 

detects biosynthetic loci across a wide array of secondary 

metabolite classes such as polyketides, non-ribosomal 

peptides and many others. Our study focused predominantly 

on secondary metabolites produced by Streptomyces species 

thriving in challenging environments. Specifically, 

Streptomyces sp. A144, Streptomyces sp. KY75, 
Streptomyces sp. INR7, Streptomyces sp. Mg1, Streptomyces 

huasconensis and Streptomyces leeuwenhoekii were the 

target species. Their respective NCBI sequences were 

provided as input data and detection strictness was 

maintained at a rigorous level.  

 

Additional features, including MIGB Comparison and 

Cluster Blast, were enabled before submission. The result 

obtained comprised of the whole genome sequence of the 

species from which the secondary metabolites produced by 

each gene were identified. For each identified secondary 

metabolite, detailed information concerning compound 

structure, PubChem ID, NPAtlas ID and the presence of 2D 

or 3D structures were systematically collected and 

documented. 

 

Protein preparation and Molecular Docking: The protein 

structure was obtained from the Protein Data Bank (PDB ID: 

2IVU) and it was prepared using BIOVIA Discovery Studio. 

Water molecules and heteroatoms were removed and polar 

hydrogen atoms were added. The three-dimensional 

structure of the reference compound vandetanib (ID - 

3081361) was retrieved from PubChem in structural data 

format19.The structures of the prepared 2IVU protein and the 

compounds to be docked were first loaded onto PyRx 

software, where molecular docking was performed using the 

AutoDock Vina mode to identify potential binding sites and 

ligand energies9. The parameters such as grid size and 

scoring functions were adjusted. The docking simulation 

was initiated to generate possible binding conformations out 

of which the most stable structure was selected for analysis. 

Compounds with docking scores more negative than 

vandetanib were selected for further analysis21. 

 

ADMET analysis: Pharmacokinetic parameters which 

control a drug's capacity to reach target proteins in the body 

and how long it stays in the bloodstream, are included in 

ADMET (absorption, distribution, metabolism, elimination 

and toxicity) analysis26,30. ADMET procedures are now 

commonly used in early-stage drug discovery to reduce 

attrition rates, emphasizing the importance of addressing 

these factors upfront to enhance drug efficacy and safety 

profiles. ADMET Lab 2.0 simplifies this process by 

providing comprehensive analysis of these properties39. The 

screened compounds were subjected to ADMET analysis to 

analyze the physicochemical properties of these 

compounds.The parameters including MW, nHA, nHD, 

LogP, HIA, F20%, F30%, PBB, BBB, CL, carcinogenicity, 

hERG blocker, rat oral toxicity were evaluated. 

 

Validation of results using Machine Learning Scoring 

Functions: In recent years, machine-learning scoring 

functions (ML-SFs) based on protein-ligand complexes 

have shown substantial promise in specialized small-scale 

investigations5. To validate the docking results, three 

prominent ML-SFs such as KDeep, GNINA and RF Score 

were utilised. KDeep is a fast machine-learning approach for 

predicting binding affinities using State-of-the-Art 3D-

convolutional neural networks18. GNINA utilizes an 

ensemble of convolutional neural networks (CNNs) as a 

scoring function. A CNN scoring function automatically 

learns the key features of protein-ligand interactions that 

correlates with binding23. RF score calculates the binding 

affinity of a protein-ligand pair in a complex38. Higher RF 

score value indicates better binding of the ligand into the 

binding site of the protein.  

 

Interaction analysis and anticancer activity-prediction: 
In the drug discovery process, interaction analysis plays a 

pivotal role in understanding complex biological processes 

and mechanisms3. The docked configurations of each 

compound in PDB format were uploaded to PLIP for 

analysis2. PLIP provides visual representation of the protein-

ligand complex, the interaction chain and different 

interaction types between each compound and the target 

protein. After perfoming PLIP analysis, the PASS server was 

used to predict the biological spectrum of the screened 

compounds. Using Bayesian estimates, the server predicts 

the likelihood of actives (Pa) and inactives (Pi) to 

differentiate the biological activities of hit compounds13. 

 

Results and Discussion 
Mining Streptomyces genomes for anti-cancer 

metabolites: antiSMASH7.0 is a renowned online genome 

mining tool used for predicting secondary metabolites 

synthesized by bacteria. The primary types of gene clusters 

involved in this biosynthesis include non-ribosomal peptide 

synthetases (NRPS), polyketide synthases (PKS), terpenes, 

siderophores, lanthipeptides and ribosomally synthesized 

and post-translationally modified peptides (RiPP-like). 

Previous studies have indicated that NRPS, PKS and terpene 

gene clusters are among the most abundant, containing a vast 

array of bioactive compounds with varied functions 

including plant protection11,28.  

 

In total, 73 types of biosynthetic gene clusters (BGCs) were 

identified in the secondary metabolites produced by various 

Streptomyces species. It is important to note that organisms 

with multiple open reading frames (ORFs) typically encode 

a greater number of gene cluster regions24. The genome 

analysis of all Streptomyces spp. produced a total of 3383 

putative secondary metabolites. 
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Molecular docking and selection of candidate 

compounds: Molecular docking aids in the identification of 

potential drug candidates by predicting the binding affinity 

of small molecules to a specific protein or receptor31. The 

RET-based protein 2IVU was prepared and docked with 

compounds after energy minimization using PyRx. 

Vandetanib was also docked against the target protein, 

yielding a docking score of -8.7 kcal/mol. The docking 

scores of the ligands were compared to this value, selecting 

those with scores lower (more negative) than vandetanib for 

further investigation. As shown in table 1, based on the 

threshold prescribed, out of 3383 compounds, 40 

compounds were found to have lower docking scores in the 

range of -8.700 kcal/mol to -55.700 kcal/mol than 

vandetanib. 

 

Table 1 

Docking and ML-SF scores of the reference and screened lead compounds. 

S.N. Compound name Compound ID Docking 

Score 

ML-SF 

KDeep GNINA RF 

dG (kcal/mol) CNN affinity pK units 

1 Vandetanib 3081361 -8.7 -11.386 7.202 6.025 

2 Urdamycin E 175975 -8.7 -9.805 6.718 6.209 

3 Kinamycin 161863 -8.7 -8.776 6.707 5.989 

4 Cyanogramide 102143687 -8.9 -7.07 5.611 5.95 

5 AQ 256 12435249 -8.9 -7.2 4.932 5.971 

6 A879369 135957253 -9 -7.466 5.176 5.955 

7 Dehydroxynocardamine 11606728 -9 -6.636 6.17 5.961 

8 Aurachin A 6439172 -9.1 -8.558 6.261 5.966 

9 Splenocin C 42626285 -9.1 -8.654 6.532 6.028 

10 Curamycin A 71587265 -9.1 -15.996 6.412 7.093 

11 Neoantimycin 585842 -9.1 -9.451 6.541 7.093 

12 Frontalamide B 101515038 -9.1 -7.438 5.337 5.969 

13 Nybomycin 169159 -9.2 -6.977 6.309 5.957 

14 Aranciamycin 15177995 -9.2 -7.41 4.932 5.943 

15 Naringenin 932 -9.2 -8.428 6.086 5.963 

16 CDA3a 139588787 -9.3 -15.723 7.273 6.661 

17 Carquinostatin A 10065662 -9.3 -9.138 5.915 5.983 

18 Q27160026 115005 -9.3 -8.021 6.189 5.981 

19 Diazaquinomycin A 122105 -9.3 -7.937 6.914 5.968 

20 Diazepinomicin 9868980 -9.3 -9.533 7.057 5.961 

21 Yanuthone D 10436112 -9.4 -9.945 6.547 5.998 

22 Anthrabenzoxocinone 9868865 -9.5 -7.777 6.195 5.956 

23 CHEBI:156389 123132247 -9.5 -7.965 5.502 5.961 

24 Benastatin A 126408 -9.5 -9.986 6.627 5.956 

25 Enterobactin 34231 -9.5 -8.592 5.616 5.979 

26 Parabactin 126461 -9.6 -12.559 6.59 7.095 

27 Dihydromaltophilin 101934630 -9.7 -8.295 5.809 5.969 

28 Isorenieratene 9984420 -9.7 -9.533 6.071 6.059 

29 A33853 133379 -9.8 -8.787 6.734 5.976 

30 Rebeccamycin 73110 -9.8 -10.05 7.284 6.017 

31 Cryptophycin 327 11422411 -10.1 -10.351 6.637 6.132 

32 Porphyrinione 6438546 -10.1 --- 7.373 6.283 

33 Ergovaline 104843 -10.2 -8.029 6.56 6.009 

34 Griseusin A 16102131 -10.4 -7.802 5.327 5.963 

35 Oviedomycin 5323531 -10.4 -7.324 5.634 5.958 

36 Melanin 6325610 -10.4 -7.909 6.912 5.958 

37 Erdasporine A 102584105 -10.6 -9.121 7.034 5.971 

38 Chartreusin 5281394 -11.3 -9.303 6.813 6.133 

39 Esmeraldin B 443757 -12.3 -11.846 7.288 6.028 

40 Rhodomycin A 9896436 -15.4 -10.473 5.345 6.947 

41 Linearmycin A 15238099 -55.7 -9.501 4.116 6.548 

*Bold text indicates compounds that are better than the reference compound 
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Table 2 

ADMET analysis of the reference and screened lead compounds. 
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MW (Molecular Weight): Optimal range 100-600, nHA (Number of hydrogen bond acceptors): Optimal range 0-12, nHD (Number 

of hydrogen bond donors): Optimal range 0-7, logP (Logarithm of the n-octanol/water distribution coefficient): Optimal range 0-3 

log mol/L, HIA (Human intestinal absorption), F20% or F30% (Human oral bioavailability of 20% and 30%, respectively), PPB 

(Plasma protein binding): ≤ 90%: excellent; otherwise: poor, BBB (Blood-brain barrier), Clearance: ≥ 5: excellent; < 5: poor. The 

prediction probability values are transformed into six symbols: 0-0.1(---) excellent, 0.1-0.3(--), 0.3-0.5(-), 0.5-0.7(+) medium, 0.7-

0.9(++) and 0.9-1.0(+++) poor. 

 

Machine Learning Analysis: ML-SF such as KDeep, 

GNINA and RF, aids drug discovery by predicting 

molecular properties and protein-ligand interactions, 

enhancing virtual screening and binding affinity 

prediction27. Table 1 presents the revalidation scores for 

vandetanib and lead compounds using these ML-SFs. 

KDeep evaluates protein-ligand interaction based on binding 

affinity, where a more negative ΔG value indicates stronger 

binding. Among the 41 compounds analysed, Curamycin A, 

CDA3a, Parabactin and Esmeraldin B exhibited more 

negative dG values than vandetanib (-11.386 kcal/mol). 

GNINA considers the convolutional neural network (CNN) 

affinity, with higher scores suggesting stronger predicted 

binding interactions.  
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CDA3a, Rebeccamycin, Porphyrinione and Esmeraldin B 

demonstrated better affinities compared to vandetanib 

(7.202 kcal/mol) in GNINA analysis. RF scoring prioritizes 

compounds based on predicted bioactivity, with higher pKa 

values indicating better performance. In this analysis, 

Urdamycin E, Splenocin C, Curamycin A, Neoantimycin, 

CDA3a, Parabactin, Isorenieratene, Cryptophycin 327, 

Porphyrinione, Chartreusin, Esmeraldin B, Rhodomycin A 

and Linearmycin A had higher RF scores than vandetanib 

(6.025). It is worth mentioning that the results indicate that 

CDA3a and Esmeraldin B outperformed vandetanib across 

all scoring functions. 

 

ADMET Property Analysis: The drug discovery and 

development process are inherently complex, involving 

significant costs, target identification and extensive pre-

clinical and clinical trials8. Thus, ensuring the efficacy and 

safety of a drug to manifest its therapeutic effects in the body 

is crucial33. Parameters like Lipinski’s Rule of Five (Ro5), 

molecular weight (MW), hydrogen bond donors (nHD) and 

acceptors (nHA) and logP (lipophilicity) are pivotal for 

assessing drug-likeness.  

 

Additionally, factors including human intestinal absorption 

(HIA), fractions absorbed (F20% and F30%), plasma protein 

binding (PPB), blood-brain barrier penetration (BBB), 

clearance (CL), carcinogenicity, hERG blocking potential 

(cardiac safety) and rat oral toxicity were evaluated. Only 

compounds meeting stringent criteria for these parameters, 

detailed in table 2, are considered suitable for advancing in 

drug development, ensuring both efficacy and safety in 

therapeutic applications. 

 

Interaction analysis and anti-cancer activity prediction: 
PLIP interactions of reference and lead compounds, assessed 

through ADMET analysis, are summarized in table 3. 

According to the PLIP interaction profile, vandetanib, the 

reference compound, exhibited fewer interactions such as 

four hydrophobic, three hydrogen bonds and one cationic 

interaction with RET protein as in fig. 1a. In contrast, 

esmeraldin B showed highly favourable interactions with the 

RET protein, involving seven hydrogen bonds, sevem 

hydrophobic interactions and two salt bridges (Figure 1b). 

This highlights a clear relationship between increased 

hydrogen and hydrophobic interactions in protein-ligand 

complexes of the hit compound facilitating enhanced 

binding affinity34.  

 

Collectively, esmeraldin B stands out with the highest 

interaction count, superior docking score, validation across 

all three ML-SFs and satisfying ADMET properties 

positioning it as a prime candidate. Further, the anti-cancer 

potential of the compound was evaluated using the PASS 

prediction algorithm, as detailed in table 4.  

 

The results indicate a higher probability of active outcomes 

compared to inactive ones, suggesting a strong likelihood of 

experimental activity for these compounds10. The PASS 

predictions align with findings of significant antineoplastic 

activity in lung cancer, confirming the potential therapeutic 

efficacy of the evaluated compounds.  

 

Scaffold analysis: The structural representation of both 

vandetanib and Esmeraldin B is depicted in figure 2. 

Literature evidence suggests that vandetanib's quinazoline 

scaffold targets kinases in tumor growth and angiogenesis, 

enhancing its overall binding potency17 (Fig. 2a). 

Esmeraldin B, a phenazine metabolite from Streptomyces 

antibioticusTü 2706, features a core structure with three 

aromatic rings and a 5,10-diaza-anthracene arrangement, 

known for its potent antitumor properties (Fig. 2b).  

 

This scaffold that showcases characteristic of phenazine 

derivatives, exhibits diverse biological activities including 

antibacterial effects and significant antitumor activity 

attributed to its redox properties29.  

 

Our study highlights Esmeraldin B's efficacy in inhibiting 

tumor growth, particularly in combination with other 

anticancer drugs, aligning with the findings from 

experimental tumor model studies. Studies have revealed 

that phenazine-5,10-dioxide derivatives, akin to Esmeraldin 

B, enhance antiproliferative effects in combination with 

cisplatin by inducing DNA damage and inhibiting DNA 

topoisomerase II, making them promising candidates for 

targeted cancer therapies35. 

 

Table 3 

PLIP analysis detailing interactions of reference and hit compounds. 

S.N. Compound name Compound ID No. of 

hydrophobic 

interactions 

No. of 

hydrogen 

bonds 

No. of salt 

bridges 

1 Vandetanib 3081361 4 3 0 

2 CHEBI:156389 123132247 8 5 1 

3 Oviedomycin 5323531 6 4 0 

4 Esmeraldin B 443757 7 7 2 

5 Diazaquinomycin A 122105 7 3 0 

6 Aranciamycin 15177995 4 5 0 

7 Anthrabenzoxinone 9868865 5 5 0 
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Table 4 

Antineoplastic activity of the compounds analyzed using PASS server. 

S.N. Compounds Pa Pi Predicted activity 

1 Vandetanib 0.177 0.111 Antineoplastic (non-small cell lung cancer) 

2 Esmeraldin B 0.170 0.085 Antineoplastic (lung cancer) 

 

 
(a) 

 

 
(b) 

Figure 1: Interaction profile of RET protein (Sandal) in complex with (a) Vandetanib (Red) and  

(b) Esmeraldin B (Cyan) 
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(a) 

 

 
(b) 

Figure 2: The 2D structures of (a) Vandetanib and (b) Esmeraldin B 

 

Conclusion 
The RET gene, often implicated in non-small cell lung 

cancer (NSCLC), undergoes mutations leading to 

uncontrolled cell proliferation. Traditional treatments like 

vandetanib, although targeting RET kinase, show limited 

efficacy and notable side effects. This study aims to discover 

alternative RET inhibitors using secondary metabolites from 

Streptomyces species. Utilizing the antiSMASH database, 

3383 metabolites were identified and docked against the 

RET protein 2IVU. Compounds surpassing vandetanib’s 

docking score were further analyzed for ADMET properties 

and validated through machine learning tools like KDeep, 

GNINA and RF score analysis. Esmeraldin B, a phenazine 

metabolite, emerged as a promising candidate, 

demonstrating superior binding affinity and interaction with 

the RET protein.  

 

Structural analysis revealed Esmeraldin B forming more 

hydrogen and hydrophobic bonds compared to vandetanib, 

potentially enhancing its efficacy. The phenazine structure 

of Esmeraldin B, known for its antitumor properties, further 

supports its potential as a RET inhibitor. Its significant 

antineoplastic activity, coupled with favourable ADMET 

properties, underscores its promise in treating RET-induced 

NSCLC. This investigation not only highlights the potential 

of microbial metabolites in cancer therapy but also 

highlights the importance of integrating computational and 

biochemical methods in drug discovery. Further in vivo 
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studies and clinical trials are essential to validate Esmeraldin 

B’s therapeutic efficacy and safety, paving the way for novel 

treatments in lung cancer. 
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